Overview and Nutrition Management of Congenital Heart Disease in Pediatric Patients

Katy Kakol, Dietetic Intern
June 12, 2013
Outline

• Introduction
 • Definitions, prevalence, etiology, & diagnosis
• Normal Heart Anatomy & Physiology
• Types of Congenital Heart Defects: Common & Complex
 • Anatomy & Physiology
 • Medical & Surgical Intervention
• Nutrition Management
• Challenges & Complications in CHD Patients
• Case Study
• Summary
Learning Objectives

• Define congenital heart disease and discuss the prevalence, etiology, and diagnosis
• Demonstrate a basic knowledge of the anatomy and physiology of a normal heart
• Identify common and complex types of congenital heart defects (CHDs)
• Discuss the anatomy and physiology of 5 CHDs
 • Discuss the medical/surgical interventions of each
• Discuss the nutrition management of CHD and apply knowledge in a hypothetical pediatric case
Definition & Prevalence

- **Congenital Heart Disease (CHD)**
 - Congenital = “existing at birth”
 - **Definition**: problem with the heart’s structure and function that is present at birth
 - Congenital heart “defect” more accurate than “disease”
 - Defects occur when the heart or blood vessels near the heart do not develop normally before birth

- Most common birth defect in the United States (U.S.) and leading cause of infant death
 - ~1% or ~40,000 infants affected each year
 - 1 out of every 120 infants is born with a CHD in the U.S.
 - ~1 million infants are born with CHD worldwide
TRUE OR FALSE

CHDs are 60 times more prevalent than childhood cancer
Etiology

80% Unknown
Multifactorial inheritance with association of both genetic & environmental contributors

- **Genetic Factors:**
 - Heredity – rare that two children in the same family might have a defect

- **Environmental Factors:**
 - Maternal Conditions
 - Smoking, drugs, and alcohol
 - Obesity
 - Diabetes*
 - Viral infections (i.e. rubella)

20% Known

- **Chromosome abnormalities (8-10%)**
 - Down syndrome (40-50%)
 - Trisomy 18
 - Williams syndrome

- **Mendelian Syndromes (3-5%)**
 - Noonan syndrome (80-90%)

- **Non-syndromal single gene disorders**
 - > 30 genes have been linked to CHDs
 - Transcription factor genes most common
 - **NKX2-5:** TOF, HLHS, TGA, VSD, ASD, DORV
CHD Risk Factor: Maternal Diabetes

- Five-fold increased risk of CHDs in infants from mothers with pregestational diabetes
- Maternal glucose control affects cardiogenesis at a very early stage of fetal development (< 7 weeks gestation)

- Compared the incidence & pattern of CHD in infants of T1DM mothers (n=308) with infants of healthy non-diabetic mothers (n=1879)
 - Odds ratio for certain types of CHDs ranged from 2.52 (Anomalies of pulmonary artery) to 18.24 (Single ventricle physiology) (p < 0.05)
 - Increased incidence of TGA, truncus arterosus, visceral heterotaxia, and single ventricle defects in infants of T1DM mothers

- Compared T1DM mothers who had infants with CHD with T1DM mothers who had healthy infants
 - Average 1st trimester HgbA1C concentration was 9.79% vs. 8.14% (p < 0.05)
Diagnosis

- Prenatally
 - Fetal echocardiogram
- Postnatally (shortly after birth)
 - Physical exam
 - **Signs & Symptoms:** Heart murmur, cyanosis, shortness of breath, rapid breathing, failure to thrive (FTT), signs of heart failure
 - Echocardiography (Echo)*
 - Cardiac Catheterization*
 - Electrocardiogram (EKG)
 - Chest X-Ray
 - Pulse oximetry
TRUE OR FALSE

CHDs cause chest pain or other painful symptoms
Heart Anatomy & Physiology
Healthy Heart Anatomy & Function

RIGHT SIDE = LOWER PRESSURE

LEFT SIDE = HIGHER PRESSURE

http://www.youtube.com/watch?v=JA0Wb3gc4mE&feature=player_embedded
Fetal Heart

Foramen ovale
- Allows oxygenated blood from the placenta circulation to bypass lungs and go straight to left side of the heart

Ductus arteriosus
- Allows mixed blood to go back to placenta for oxygenated blood (fetal lungs not developed)
After Birth…

- Foramen ovale & ductus arteriosus begin to close
- Shunts sometimes remain open or can be kept open (patent)
 - **BAD:** if infant otherwise healthy
 - **GOOD:** if infant has CHD, as it can allow mixed blood to circulate until defect repaired
 - Prostoglandin E1
Types of Defects: Medical & Surgical Management
Common Types of CHDs

<table>
<thead>
<tr>
<th>Defect Category</th>
<th>Defect Name</th>
</tr>
</thead>
</table>
| **A cyanotic Defects**: right-to-left cardiac shunting | • Ventricular septal defect (VSD)
• Atrial septal defect (ASD)
• Patent ductus arteriosus (PDA)
• Atrioventricular septal defect (AVSD) |
| **Cyanotic Defects**: left-to-right cardiac shunting | • Tetralogy of fallot (TOF)
• Pulmonary stenosis (PS)
• Aortic stenosis (AS)
• Interrupted aortic arch (IAA)
• Coarctation of the aorta (CoA)
• Transposition of the great arteries (TGA)
• Total anomalous pulmonary venous return (TAPVR)
• Double outlet right ventricle (DORV)
• Double inlet left ventricle (DILV)
• Truncus arteriosus
• Pulmonary atresia (PA)
• Tricuspid atresia (TA)
• Hypoplastic left heart syndrome (HLHS) |
Ventricular Septal Defect (VSD)

Most common form of CHD
- 15-20% of all CHD cases

Description
- Hole in the wall (septum) separating the two lower chambers of the heart
 - Allows blood to mix
 - Red blood from high pressured left side → low pressured right side
 - Extra blood pumped into pulmonary arteries increases work of heart & lungs → congested lungs
- Holes can vary in size
 - Small VSD- asymptomatic with normal growth & development
 - Large VSD- pulmonary HTN & CHF with delayed growth & development
VSD: Medical Management

Small VSD
- Observation only
- Often close on their own
- Infective (bacterial) endocarditis prophylaxis
 - Antibiotics used in prevention of an infection caused by bacteria that enter the bloodstream and settle in the lining of the heart, heart valve, or blood vessel

Large VSD
- Diuretics
- Frequent feedings of caloric dense formulas
- Infective endocarditis prophylaxis
VSD: Surgical Repair

- **Small VSD:**
 - Surgery usually not indicated unless another defect is involved

- **Moderate to large VSD:**
 - Surgery indicated if CHF or growth failure cannot be improved with medical management
 - Hole should be closed surgically within first 6 months of age

- **Temporary repair**
 - Child very small or very sick
 - Pulmonary artery band is placed around the pulmonary artery
 - Restricts the extra blood flow to the lungs
 - Hole closed when the child is older

- **Permanent repair**
 - Closure of defect with stitches or a patch
VSD: Surgical Management

Temporary Repair

Permanent Repair

VSD Patch (To Close Opening Between Ventricles)
Tetrology of Fallot (TOF)

8-10% of all CHD cases

Four Defects:
1. Ventricular Septal Defect
2. Pulmonary Stenosis
3. Overriding aorta
4. Right ventricular hypertrophy

- Most common form of CHD that produces cyanosis
- Growth retardation can occur
TOF: Medical Management

- **Hypercyanotic spells**
 - Severe cyanosis + paleness, tachypnea, altered level of consciousness
 - Occur after crying or after feeding
- **Treatment:**
 - Knee-chest positioning
 - Morphine sulfate
 - Oxygen
 - IVF
 - Sodium bicarbonate
 - Phenylephrine
 - Propranolol
- **Infective endocarditis prophylaxis**
 Surgical repair indicated for all patients
TOF: Surgical Repair

Blalock-Taussig Shunt (BT-Shunt)
- Temporary
- Performed if infant too sick or pulmonary arteries too small for corrective procedure
- Small tube from subclavian artery into pulmonary artery
 - Allows blood to enter lungs
- *Something the Lord Made*

Complete Repair
- 1-6 months of age
 - Infants who had palliative shunt may have complete repair 6-12 months of age
- VSD closed with patch
 - Allows oxygen poor blood to flow into lungs
- Incision across pulmonary annulus + enlargement with wide patch
 - Relieves pulmonary narrowing
TOF: Surgical Management

Temporary Repair

- Modified Blalock-Taussig Shunt
- Pulmonary Stenosis (narrowing)
- Ventricular Septal Defect

Complete Repair

- Patch to Enlarge Narrowed Pathway from RV to PA
- VSD Patch (To Close Opening Between Ventricles)
Transposition of the Great Arteries (TGA)

5% of all CHD cases

Description:
- Pulmonary artery & aorta are in opposite positions
 - Aorta carrying oxygen poor blood to body
 - Pulmonary artery carrying oxygen rich blood to lungs
- ASD, VSD, & PDA necessary for survival
- Moderate to severe cyanosis
TGA: Medical & Surgical Management

Medical
- Prostaglandin E1 infusion to keep PDA open
- Correction of metabolic acidosis
- Diuretics
- Frequent feedings of caloric dense formula

Surgical
- Arterial Switch
 - Aorta and pulmonary artery divided
 - Aorta and pulmonary artery moved to proper position
- Coronary arteries
 - Removed from aortic trunk & attached to pulmonary trunk
 - Supply heart with oxygenated blood
- Hole between VSD closed with a patch or stitches
- PDA tied off and/or cut
TGA: Surgical Management Cont.

Arterial Switch Operation Step 3

LA: Left Atrium RA: Right Atrium LV: Left Ventricle RV: Right Ventricle

- Oxygen-rich Blood
- Oxygen-poor Blood
Complex Single Ventricular Defects
Hypoplastic Left Heart Syndrome (HLHS)

- 1% of all CHD cases
- Most common cause of death from CHD in 1st month of life

Description:
- Left ventricle underdevelopment (left ventricular hypoplasia)
- Mitral valve not formed (mitral atresia) or undeveloped (mitral stenosis)
- Aortic valve not formed (aortic atresia) or underdeveloped (aortic stenosis)
- Ascending aorta underdeveloped & narrowed (CoA)
- ASD

Become extremely ill within 1st few hours-days of life
HLHS: Medical Management

• Prostaglandin E1 infusion to keep PDA open
• Correction of metabolic acidosis
• Infective endocarditis prophylaxis
• Frequent feedings of caloric dense formula
Tricuspid Atresia

1-3% of all CHD cases

Description:
- No tricuspid valve
- Small right ventricle
- ASD & VSD
- PS

Allows for blue blood in the right atrium to flow through ASD→ left atrium. The mixed blood→left ventricle→aorta→body

Smaller amounts of blood flows through VSD→right ventricle→pulmonary artery→lungs (or PDA)
Tricuspid Atresia: Medical Management

• Prostaglandin E1 may be used to keep PDA open until surgical repair
• Frequent feedings of caloric dense formula
HLHS & Tricuspid Atresia: Surgical Repair

Stage I: Norwood
After 3 days of life
• Blalock-Taussig Shunt (BT Shunt)
 • Shunt between aorta and right pulmonary artery
• Sano modification (RV-PA conduit)
 • Shunt between right ventricle and main pulmonary artery
• Pulmonary artery & small aorta fashioned together to make new larger aorta
• PDA is removed
• Atrial septum removed
• Narrowing aorta opened

Stage II: Bidirectional Glenn Procedure
6 months of age
• Shunt from Stage I removed
• Blue blood from head, neck, and upper body directed to the right pulmonary artery through superior vena cava
Surgical Repair: Stage I & II

Stage I - Norwood
- Blalock-Taussig Shunt
- Surgically Enlarged Atrial Septal Defect
- Homograft Patch (To Reconstruct Aorta)
- Homograft Patch on PA

Stage II - Bidirectional Glenn
- Divided Blalock-Taussig Shunt
- Superior Vena Cava Attached to Right PA
- Left PA

LA: Left Atrium RA: Right Atrium LV: Left Ventricle RV: Right Ventricle
- Oxygen-rich Blood
- Oxygen-poor Blood
- Mixed Blood
HLHS & Tricuspid Atresia: Surgical Repair

Stage III: Fontan Procedure

2-4 years of age

- End to end anastomosis of inferior vena cava to right pulmonary artery through tunnel
 - Allows oxygen poor blood to be sent to lungs
 - Tube placed through right atrium & connected to right pulmonary artery
 - Allows rerouting of oxygen poor blood to the lungs
 - Heart remains available to receive oxygenated blood from lungs & pump to body
 - Holes (fenestrations) placed in tube
 - Allow heart and body to adjust

![Diagram of Stage III Extracardiac Fenestrated Fontan](image)
Nutrition Management of CHD
Nutrition Indication

- Malnutrition & FTT have long been recognized as common consequences of CHDs
- Infants with cyanotic, including the complex single ventricular physiology defects are put at a higher risk for malnutrition
- Adequate nutrition is essential for growth, wound healing, and immune function
Poor Nutrition & Growth Failure

Cause is multi-factorial

- Mostly related to imbalance between:
 - Energy intake and energy expenditure
 - Energy deficit
 - Catabolism
 - Increased severity of defect = increased energy needs
 - Needs may increase for catch-up growth

- Median enteral intake < 100 kcal/kg/day of 100 consecutive infants (52 single ventricle physiology) post-operatively

- Measured oxygen consumption with respiratory mass spectrometry
- Found that hypermetabolic response is present within the first 72 hours after Norwood operation
Causes Malnutrition in CHD Patients

- Inadequate intake
 - Fatigue while feeding, fluid restriction, delayed gastric emptying or motility causing early satiety, increased work of breathing, feeding difficulty (vocal cord injury, uncoordinated suck & swallow)

- Increased energy needs
 - Increased metabolic expenditure related to increase in cardiac and respiratory work
 - Decreased fat stores and increased lean body mass

- Inefficient nutrient utilization/absorption
 - When combined with poor nutritional intake and increased metabolic rate
Nutrition Assessment

- **Weight**
 - Consider pre-operative weight (euvolemic weight)
- **Length**
- **HC**
- **Wt-for-length**
- **Assess for** for trends on appropriate growth chart
 - Wt-for-age <3rd %-ile
 - Ht-for-age < 3rd %-ile
 - Wt-for-length <3rd % ile
 - Reduction of > 2 %-iles for wt-for-age, ht-for-age, and/or wt-for-length
Determination of Estimated Needs

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Energy (kcal/kg)</th>
<th>Protein (g/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-0.5</td>
<td>120-150</td>
<td>2.2-3.5</td>
</tr>
<tr>
<td>0.5-1</td>
<td>110-140</td>
<td>1.5-2.5</td>
</tr>
<tr>
<td>1-3</td>
<td>100-120</td>
<td>1.2-2</td>
</tr>
<tr>
<td>4-6</td>
<td>80-100</td>
<td>1.2-1.5</td>
</tr>
<tr>
<td>7-10</td>
<td>60-90</td>
<td>1.0-1.5</td>
</tr>
<tr>
<td>11-14</td>
<td>Males: 55-60</td>
<td>1.0-1.5</td>
</tr>
<tr>
<td></td>
<td>Female: 45-60</td>
<td></td>
</tr>
<tr>
<td>15-18</td>
<td>45-55</td>
<td>1.0-1.5</td>
</tr>
</tbody>
</table>

- If catch-up growth indicated, used catch-up growth equation with appropriate wt-age recommendations
- Potassium: 2-5 mEq/kg
- Sodium: at least 2-3 mEq/kg (even if on sodium restriction)
- Supplement iron & vitamin D
 - Breast fed infants
 - Low formula intake
Nutrition Interventions

• Parenteral nutrition
 • Limited because of fluid restriction & medication drips in ICU
 • Concentrate medication drips to maximize fluid availability
 • Consider extra zinc
 • Additional 100 mcg/kg for infants <2.5 kg or 50 mcg/kg infants with open chest

• Enteral nutrition
 • Trophic feeds working up to 24 hour continuous
 • Increase formula caloric density
 • 24-27 kcal/oz: via formula concentration
 • 30-35 kcal/oz (if necessary): via polycose and microlipid
 • Breast milk can be used if fortified to appropriate caloric density
 • Continuous to bolus or oral intake + nocturnal (50% estimated needs over 12 hours) – Acute Setting
 • Or PO with NG-tube back-up
 • Intermittent feeds
 • Every 3-4 hours
• Oral nutrition
 • Transition when clinically feasible after extubation in ICU
 • Approval by SLP

• Home nutrition
 • Ensure family knows recipe & appropriate mixing procedures
 • Written intake & weight gain goals provided with mixing instructions
 • Ensure adequate formula supply (WIC?)
 • Nutrition-related home monitoring criteria includes:
 • Weight loss of 30 g in one day
 • Failure to gain 20 g/day for 3 days
 • 2 episodes of vomiting
 • Loose stools
Nutrition-Related Goals

• Pre-operative period:
 • Provide adequate nutrition to meet patient’s needs until surgery

• Post-operative critical care setting:
 • Initiate nutrition support as soon as possible
 • Avoid overfeeding
• **Step-down/acute care setting:**
 - Provide adequate nutrition to meet needs & correct deficiencies
 - Transition from PN to EN 100%
 - Transition EN to oral, or combination oral/supplemental EN
 - Age-appropriate or catch-up weight gain & growth
 - Caregivers are receptive in understanding nutrition discharge plan

• **Post-discharge/home setting:**
 - Age appropriate or catch-up weight gain & growth
 - Age appropriate feeding behaviors
Barriers to Nutrition

- Fluid restriction
- Hyperglycemia
- NPO (extubation, other procedures)
- Impaired renal function
- Hemodynamically unstable
- Electrolyte imbalances
Special Considerations & Nutrition-Related Complications

- **ECMO = Extracorporeal membranous oxygenation**
 - Dialysis for the lungs
 - Removes the blood from the body and oxygenates it before putting it back into the body
 - May be needed after major heart surgery to allow the heart to become stronger

- **Chylothorax**
 - Accumulation of chyle which transports long-chain triglycerides in the lymphatic system after damage to thoracic duct
 - Injury to thoracic duct during surgery
 - Elevated central venous pressure post-surgery

- **Nutrition Management:**
 - Infants: high MCT formula (Enfaport)
 - Older children: very low-fat (< 10 g/day) diet
 - TPN only in extreme cases
• Necrotizing enterocolitis (NEC)
 • Bowel compromise and potential necrosis in neonatal period
 • Poor gut perfusion due to diastolic flow reversal (single ventricle defects, i.e. HLHS, tricuspid atresia)
 • Deep hypothermia during cardiopulmonary bypass (CPB)
 • Ischemia/reperfusion injury associated with CPB
 • Proinflammatory response to CHD and CPB

• Nutrition Management
 • Adequate TPN if feeds are held
 • Use expressed breast milk or hypoallergenic standard infant formula when feeds restarted; advance conservatively
Case Study

• 4 month old, full-term male with VSD who presents with SOB, FTT, and feeding difficulties.

Nutrition Assessment:
• Growth Parameters
 • Wt: 4.5 kg (<2nd %-ile)
 • Length: 59 cm (<2nd %-ile)
 • HC: 40.5 cm (10-25th %-ile)
 • Wt-for-ht: 5.5 kg
 • Wt-age: 1 month old

• Intake History
 • Breast feeds PO ad lib 3-4 x per day; hold feeds if respiratory rate exceeds 50
 • Supplementation with Enfamil 20 kcal/oz: 1.5-2 oz/feeding q 3-4 hours
 • Mom reports infant feeds very slowly and for long periods of time (takes > 30 minutes to feed); and appears out of breath and tired at the end of feeding
Case Study Cont.

- Labs: WNL
- Medications: Lasix
- Estimated Nutritional Needs (Catch-up Growth):

 \[\text{Kcal/kg} = \frac{\text{kcal/kg for wt-age x IBW}}{\text{current wt}} \quad \text{protein g/kg} = \frac{\text{kcal/kg} \times 0.08-0.1}{4 \text{ kcal/g}} \]

<table>
<thead>
<tr>
<th>Age</th>
<th>Energy (kcal/kg)</th>
<th>Protein (g/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3 mos.</td>
<td>95-107</td>
<td>1.5-2</td>
</tr>
<tr>
<td>4-6 mos.</td>
<td>82-83</td>
<td>1.5-2</td>
</tr>
</tbody>
</table>

- Calorie: 120-130 kcal/kg
- Protein: 2.5-3 grams/kg
Intervention

• **Recommendations:**
 - Increase formula caloric density to 24 kcal/oz (13 oz Enfamil Concentrate + 9 oz water)
 - Limit infant to 5-10 minutes per breast, supplement with higher calorie formula
 - Feed q 3 hours with goal of 2.5 oz/feeding = provides 133 ml/kg, 107 kcal/kg, 2.3 g protein/kg
 - After 2-3 days, increase to 27 kcal/oz (13 oz Enfamil Concentrate + 6 oz water) = provides 133 ml/kg, 120 kcal/kg, 2.6 g protein/kg

• **Goals:**
 1. Nutritional intake of breast milk and concentrated formula to meet >90% of catch-up calorie needs within the next 48-72 hrs
 2. Weight gain of 25-35 grams/day

Monitor & Evaluation

• GI tolerance & adequacy of formula intake
• Appropriate weight gain
• Need for supplemental NG feedings
Summary

• CHDs are the most common birth defect responsible for infant death, while still considered rare
• Defects range from simple to complex, with single ventricular physiology being the most complex
• CHD infants generally have higher energy & nutrient needs, and feeding difficulties & growth failure are life-long issues
• Nutrition management plays key role in optimizing patients outcomes and chances for survival post-operatively
 • Promote wound healing
 • Promote catch-up growth and development
 • Reduce risk of infection
• Many factors negatively impact their ability to consume, absorb, or utilize nutrients
References

• Chamberlain RS. *Surgical Repairs of Congenital Heart Defects*. 2002; Pritchett and Hull Associates, Inc.

 - http://www.lpch.org/DiseaseHealthInfo/HealthLibrary/cardiac/chd.html
 - http://www.rwjuh.edu/health_information/centers_heart_fetlcirc.html
 - http://www.cdc.gov/nchdd/heartdefects/data.html
 - http://www.cdc.gov/Features/HeartDefects/
 - https://www.littlehearts.org/Content/CHD_Resources.asp
 - http://www.heart.org/HEARTORG/Conditions/CongenitalHeartDefects/Congenital-Heart-Defects_UCM_001090_SubHomePage.jsp
 - http://www.texasheartinstitute.org/HIC/Topics/Cond/CongenitalHeartDisease.cfm
 - http://www.chop.edu/service/cardiac-center/heart-conditions/single-ventricle.html