Overview and Nutrition Management of Congenital Heart Disease in Pediatric Patients

Katy Kakol, Dietetic Intern

June 12, 2013

Outline

- Introduction
- Definitions, prevalence, etiology, & diagnosis
- Normal Heart Anatomy & Physiology
- Types of Congenital Heart Defects: Common & Complex
- Anatomy & Physiology
- Medical & Surgical Intervention
- Nutrition Management
- Challenges & Complications in CHD Patients
- Case Study
- Summary
- References

Learning Objectives

- Define congenital heart disease and discuss the prevalence, etiology, and diagnosis
- Demonstrate a basic knowledge of the anatomy and physiology of a normal heart
- Identify common and complex types of congenital heart defects (CHDs)
- Discuss the anatomy and physiology of 5 CHDs
- Discuss the medical/surgical interventions of each
- Discuss the nutrition management of CHD and apply knowledge in a hypothetical pediatric case

Definition & Prevalence

- Congenital Heart Disease (CHD)
 - Congenital = _____________________________
 - Definition: problem with the heart’s structure and function that is present at birth
 - Congenital heart “__________________” more accurate than “disease”
 - Defects occur when the heart or blood vessels near the heart do not develop normally before birth
- Most common birth defect in the United States (U.S.) and leading cause of infant death
- ~1% or ________________ infants affected each year
- 1 out of every 120 infants is born with a CHD in the U.S.
- ~1 million infants are born with CHD worldwide
Etiology

- 80% Unknown
 - Multifactorial inheritance with association of both _____________ & _____________ contributors
 - Genetic Factors:
 - Heredity – rare that two children in the same family might have a defect
 - Environmental Factors:
 - Maternal Conditions
 - Smoking, drugs, and alcohol
 - Obesity
 - ______________________
 - Viral infections (i.e. rubella)

- 20% Known
 - Chromosome abnormalities (_____________%)
 - Down syndrome (40-50%)
 - Trisomy 18
 - Williams syndrome
 - Mendelian Syndromes (3-5%)
 - Noonan syndrome (_____________%)
 - Non-syndromal single gene disorders
 - 30 genes have been linked to CHDs
 - _______________ factor genes most common
 - NKKX2-5: TOF, HLHS, TGA, __________, ASD, DORV

CHD Risk Factor: Maternal Diabetes

- _______________ increased risk of CHDs in infants from mothers with pregestational diabetes
- Maternal glucose control affects cardiogenesis at a very early stage of _______________ development (_____________ gestation)

Diagnosis

- Prenatally
 - Fetal _______________
- Postnatally (shortly after birth)
 - Physical exam
 - Signs & Symptoms: Heart murmur, _______________, shortness of breath (SOB), rapid breathing, failure to thrive (FTT), signs of heart failure
 - _______________
 - Electrocardiogram (EKG)
 - Chest X-Ray
Healthy Heart Anatomy & Function

Child & Adult Heart

Fetal Heart

- **Oval foramen**
 - Allows oxygenated blood from the placenta circulation to bypass lungs and go straight to left side of the heart

- **Ductus arteriosus**
 - Allows mixed blood to go back to placenta for oxygenated blood (fetal lungs not developed)
After Birth

- When the baby is born and the umbilical cord is cut, the lungs are now needed to supply oxygen. The lungs expand, their blood vessels relax to accept more flow
- Foramen ovale & ductus arteriosus begin to close
- Shunts sometimes remain ____________ or can be kept open with medication (patent)
 - BAD: if infant otherwise healthy
 - GOOD: if infant has CHD, as it can allow mixed blood to circulate until defect repaired

Common Types of CHDs

<table>
<thead>
<tr>
<th>Defect Category</th>
<th>Defect Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>right-to-left cardiac shunting (abnormal blood flow)</td>
<td>• Ventricular septal defect (VSD)</td>
</tr>
<tr>
<td></td>
<td>• Atrial septal defect (ASD)</td>
</tr>
<tr>
<td></td>
<td>• Patent ductus arteriosus (PDA)</td>
</tr>
<tr>
<td></td>
<td>• Atrioventricular septal defect (AVSD)</td>
</tr>
<tr>
<td>left-to-right cardiac shunting</td>
<td>• Tetralogy of Fallot (TOF)</td>
</tr>
<tr>
<td></td>
<td>• Pulmonary stenosis (PS)</td>
</tr>
<tr>
<td></td>
<td>• Aortic stenosis (AS)</td>
</tr>
<tr>
<td></td>
<td>• Interrupted aortic arch (IAA)</td>
</tr>
<tr>
<td></td>
<td>• Coarctation of the aorta (CoA)</td>
</tr>
<tr>
<td></td>
<td>• Transposition of the great arteries (TGA)</td>
</tr>
<tr>
<td></td>
<td>• Total anomalous pulmonary venous return (TAPVR)</td>
</tr>
<tr>
<td></td>
<td>• Double outlet right ventricle (DORV)</td>
</tr>
<tr>
<td></td>
<td>• Double inlet left ventricle (DILV)</td>
</tr>
<tr>
<td></td>
<td>• Pulmonary atresia (PA)</td>
</tr>
<tr>
<td></td>
<td>• Tricuspid atresia (TA)</td>
</tr>
<tr>
<td></td>
<td>• Hypoplastic left heart syndrome (HLHS)</td>
</tr>
</tbody>
</table>

Ventricular Septal Defect (VSD)

- Most common form of CHD
 - _________________ of all CHD cases
- Description
 - Hole in the wall (_____________) separating the two lower chambers of the heart
- Allows blood to mix
- Red blood from high pressured left side to low pressured right side
- Extra blood pumped into pulmonary arteries ______ work of heart & lungs, can lead to congested lungs
- Holes can vary in size
 - Small VSD- ____________________________
 with normal growth & development
 - Large VSD- pulmonary HTN & CHF with __________ growth & development

VSD: Medical Management

- Small VSD
 - Observation only
 - Often___________ on their own
 - Infective (______________________) endocarditis prophylaxis
 - ____________________________ used in prevention of an infection caused by bacteria that enter the bloodstream and settle in the ________________ of the heart, heart ______________, or blood vessel
- Large VSD
 - Diuretics
 - ______________ feeding of caloric ______________ formulas
 - Infective endocarditis prophylaxis

VSD: Surgical Repair

- Small VSD:
 - Surgery usually ______ indicated unless another defect is involved
- Moderate to large VSD:
 - Surgery indicated if __________ or ______________ cannot be improved with medical management
 - Hole should be closed surgically within first _______________ of age
- **Temporary repair**
 - Child very small or very sick
 - Pulmonary artery ________ is placed around the pulmonary artery
 - Restricts the extra blood flow to the lungs
 - Hole closed when the child is older

- **Permanent repair**
 - Closure of defect with stitches or a patch

Tetrology of Fallot (TOF)

- _________ of all CHD cases
- Four Defects:
 1. ________________ Septal Defect: Abnormal opening or hole that allows blood to pass from the RV to the LV without going through the lungs
 2. Pulmonary Stenosis: Narrowing at or beneath the pulmonary valve that partially blocks the flow of blood
from the right side of the heart to the lungs

3. Overriding ________: aorta lies directly over the VSD

4. Right ventricular ________________: right ventricle is more muscular than normal and often enlarged
 - Most common form of CHD that produces ________________
 - Growth retardation can occur

TOF: Medical Management

- Hypercyanotic spells
 - Severe cyanosis + paleness, ____________, altered level of consciousness
- Occur after __________ or after feeding
- Treatment:
 - ________________ positioning
 - Morphine sulfate
 - Oxygen
 - IVF
 - Sodium bicarbonate
 - Phenylephrine
 - Propranolol
- Infective endocarditis prophylaxis
- **____________________ indicated for all patients

TOF: Surgical Repair

- Blalock-Taussig Shunt (BT-Shunt)
 - ________________
 - Performed if infant ____________ or pulmonary arteries ____________ for corrective procedure
 - Small tube from subclavian artery into pulmonary artery
 - Allows blood to enter lungs

- Complete Repair
 - ________________ of age
• Infants who had palliative shunt may have complete repair ___________ months of age
 o VSD closed with patch
 ▪ Allows oxygen poor blood to flow into lungs
 o Incision across pulmonary annulus + enlargement with wide patch
 ▪ Relieves pulmonary narrowing

Transposition of the Great Arteries (TGA)

• ___________of all CHD cases
• Description:
 o Pulmonary artery & aorta are in opposite positions
 ▪ Aorta carrying oxygen ___________blood to body
 o Pulmonary artery carrying oxygen ___________blood to lungs
• ASD, VSD, & PDA necessary for survival
• Moderate to severe cyanosis

TGA: Medical & Surgical Management

• Medical
 o Prostaglandin E1 infusion to keep PDA open
 o Correction of metabolic acidosis
 o Diuretics (i.e. Aldactone, Lasix)
 o Frequent feedings of caloric dense formula
• Surgical
 o Arterial Switch
 ▪ Aorta and pulmonary artery divided
 ▪ Aorta and pulmonary artery _________ to proper position
 o Coronary arteries
 ▪ Removed from aortic trunk & attached to pulmonary trunk
 ▪ Supply heart with _____________ blood
 o Hole between VSD _____________ with a patch or stitches
 o PDA tied off and/or cut

Arterial Switch Operation Step 1

Arterial Switch Operation Step 2

Arterial Switch Operation Step 3
Complex Single Ventricular Defects

Hypoplastic Left Heart Syndrome (HLHS)

- _______ of all CHD cases
- Most common cause of ______________ from CHD in 1st month of life
- Description:
 - ____________ ventricle underdevelopment (left ventricular hypoplasia)
 - Mitral valve not formed (mitral atresia) or undeveloped (mitral stenosis)
 - ____________ valve not formed (aortic atresia) or underdeveloped (aortic stenosis)
 - Ascending aorta underdeveloped & narrowed (CoA)
 - ASD
- Become extremely ill within 1st few ___________ of life

HLHS: Medical Management

- ________________ infusion to keep PDA open
- Correction of metabolic acidosis
- Infective endocarditis prophylaxis
- Frequent feedings of caloric dense formula

Tricuspid Atresia

- _________ of all CHD cases
- Description:
 - No tricuspid valve
 - Small right ventricle
 - ASD & VSD
 - PS
- Allows for _______________ in the right atrium to flow through ASD→ left atrium. The ____________ blood→left ventricle→aorta→body
- Amounts of blood flows through VSD → right ventricle → pulmonary artery → lungs (or PDA)

Tricuspid Atresia: Medical Management
- Prostaglandin E1 may be used to keep PDA open until surgical repair
- Frequent feedings of caloric dense formula

HLHS & Tricuspid Atresia: Surgical Repair

- **Stage I: Norwood**
 - After _______ of life
 - Shunt between aorta and right pulmonary artery
 - Sano modification (RV-PA conduit)
 - Shunt between right ventricle and main pulmonary artery
 - Pulmonary artery & small aorta fashioned together to make new larger aorta
 - PDA is _______
 - Atrial septum removed
 - Narrowing aorta _______
 - _______

- **Stage II: Bidirectional Glenn Procedure**
 - _______ of age
 - Shunt from Stage I removed
 - _______ from head, neck, and upper body directed to the right pulmonary artery through superior vena cava

Stage I - Norwood

- Blalock-Taussig Shunt
- Surgically Enlarged Atrial Septal Defect
- Homograft Patch (To Reconstruct Aorta)
- Left Atrium (LA)
- Right Atrium (RA)
- Left Ventricle (LV)
- Right Ventricle (RV)

Stage II - Bidirectional Glenn

- Divided Blalock-Taussig Shunt
- Superior Vena Cava Attached to Right PA
- Left PA
- Right PA

- Oxygen-rich Blood
- Oxygen-poor Blood
- Mixed Blood

LA: Left Atrium RA: Right Atrium LV: Left Ventricle RV: Right Ventricle
• **Stage III: Fontan Procedure**
 2-4 years of age
 - End to end anastomosis of inferior vena cava to right pulmonary artery through ____________
 - Allows oxygen poor blood to be sent to lungs
 - Tube placed through right atrium & connected to right pulmonary artery
 - Allows rerouting of oxygen ___________ blood to the lungs
 - Heart remains available to receive ___________ blood from lungs & pump to body
 - Holes (______________) placed in tube
 - Allow heart and body to adjust

Nutrition Management of CHD

Nutrition Indication

- _________________& FTT have long been recognized as common consequences of CHDs
- Infants with cyanotic, including the complex single ventricular physiology defects are put at a _______________ risk for malnutrition
 - Especially during 1st and 2nd stage repairs
- Adequate nutrition is _________________ for growth, wound healing, and immune function

Poor Nutrition & Growth

- Cause is multi-factorial
- Mostly related to imbalance between:
 - Energy intake and energy expenditure
 - Energy deficit
 - Catabolism
- Increased severity of defect = increased energy needs
 - Needs may increase for catch-up growth
 - Median enteral intake < 100 kcal/kg/day of 100 consecutive infants (52 single ventricle physiology) post-operatively
o Measured oxygen consumption with respiratory mass spectrometry
o Found that hypermetabolic response is present within the first 72 hours after Norwood operation

Causes of Malnutrition in CHD Patients
- Inadequate ____________
 - Fatigue while feeding, fluid restriction, delayed gastric emptying or motility causing early satiety, increased work of breathing, feeding difficulty (vocal cord injury, uncoordinated suck & swallow)
- ____________ energy needs
 - Increased metabolic expenditure related to increase in cardiac and respiratory work
 - Decreased fat stores and increased lean body mass
- Inefficient nutrient utilization/absorption
 - When combined with poor nutritional intake and increased metabolic rate

Nutrition Assessment
- Weight
 - Consider pre-operative weight (euvoletic weight)
- Length
- HC
- Wt-for-length
- Assess for trends on appropriate growth chart
 - Criteria for determination of malnutrition in CHD patients
 - Wt-for-age < 3rd %-ile
 - Ht-for-age < 3rd %-ile
 - Wt-for-length < 3rd % ile
 - Reduction of > 2 %-iles for wt-for-age, ht-for-age, and/or wt-for-length

Determination of Estimated Needs

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Energy (kcal/kg)</th>
<th>Protein (g/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-0.5</td>
<td>120-150</td>
<td>2.2-3.5</td>
</tr>
<tr>
<td>0.5-1</td>
<td>110-140</td>
<td>1.5-2.5</td>
</tr>
<tr>
<td>1-3</td>
<td>100-120</td>
<td>1.2-2</td>
</tr>
<tr>
<td>4-6</td>
<td>80-100</td>
<td>1.2-1.5</td>
</tr>
<tr>
<td>7-10</td>
<td>60-90</td>
<td>1.0-1.5</td>
</tr>
<tr>
<td>11-14</td>
<td>Males: 55-60</td>
<td>1.0-1.5</td>
</tr>
<tr>
<td></td>
<td>Female: 45-60</td>
<td></td>
</tr>
<tr>
<td>15-18</td>
<td>45-55</td>
<td>1.0-1.5</td>
</tr>
</tbody>
</table>
• If catch-up growth indicated, used catch-up growth equation with appropriate wt-age recommendations
• Potassium: 2-5 mEq/kg
• Sodium: at least 2-3 mEq/kg (even if on sodium restriction)
• Supplement iron & vitamin D
 o Breast fed infants
 o Low formula intake

Nutrition Interventions

• Parenteral nutrition
 o Limited because of fluid restriction & medication drips in ICU
 o Concentrate medication drips to maximize fluid availability
 o Consider extra zinc
 ▪ Additional 100 mcg/kg for infants <2.5 kg or 50 mcg/kg infants with open chest
• Enteral nutrition
 o Trophic feeds working up to 24 hour continuous
 o Increase formula caloric density
 ▪ 24-27 kcal/oz: via formula concentration
 ▪ 30-35 kcal/oz (if necessary): via polycose and microlipid
 ▪ Breast milk can be used if fortified to appropriate caloric density
 o Continuous to bolus or oral intake + nocturnal (50% estimated needs over 12 hours) – Acute Setting
 • Or PO with NG-tube back-up
 o Intermittent feeds
 ▪ Every 3-4 hours
• Oral nutrition
 o Transition when clinically feasible after extubation in ICU
 o Approval by SLP
• Home nutrition
 o Ensure family knows recipe & appropriate mixing procedures
 o Written intake & weight gain goals provided with mixing instructions
 o Ensure adequate formula supply (WIC?)
 o Nutrition-related home monitoring criteria includes:
 ▪ Weight loss of 30 g in one day
 ▪ Failure to gain 20 g/day for 3 days
 ▪ 2 episodes of vomiting
 ▪ Loose stools

Nutrition-Related Goals

• Pre-operative period:
 o Provide adequate nutrition to meet patient’s needs until surgery
• Post-operative critical care setting:
 o Initiate nutrition support as soon as possible
Avoid overfeeding

- **Step-down/acute care setting:**
 - Provide adequate nutrition to meet needs & correct deficiencies
 - Transition from PN to EN 100%
 - Transition EN to oral, or combination oral/supplemental EN
 - Age-appropriate or catch-up weight gain & growth
 - Caregivers are receptive in understanding nutrition discharge plan
- **Post-discharge/home setting:**
 - Age appropriate or catch-up weight gain & growth
 - Age appropriate feeding behaviors

Barriers to Nutrition

- Fluid restriction
- Hyperglycemia
- NPO (extubation, other procedures)
- Impaired renal function
- Hemodynamically unstable
- Electrolyte imbalances

Special Considerations & Nutrition-Related Complications

- **ECMO =** Extracorporeal membranous oxygenation
 - Dialysis for the lungs
 - Removes the blood from the ___________ and oxygenates it before putting it back into the body
 - May be needed after major heart surgery to allow the heart to become stronger
- **Chylothorax:** accumulation of ____________ which transports long-chain triglycerides in the lymphatic system after damage to thoracic duct
 - Injury to thoracic duct during surgery
 - Elevated central venous pressure post-surgery

Nutrition Management

- **Infants:** high MCT formula (Enfaport)
- **Older children:** very low-fat (< 10 g/day) diet
 - ___________ only in extreme cases
- **Necrotizing enterocolitis (NEC):** Bowel compromise and potential necrosis in neonatal period
 - Poor gut _________________ due to diastolic flow reversal (single ventricle defects, i.e. HLHS, tricuspid atresia)
 - Deep hypothermia during cardiopulmonary bypass (CPB)
 - Ischemia/reperfusion injury associated with CPB
 - _________________ response to CHD and CPB

Nutrition Management

- Adequate TPN if feeds are held
- EBM or hypoallergenic standard infant formula when feeds restarted; advance conservatively
Case Study

- 4 month old, full-term male with VSD who presents with SOB, FTT, and feeding difficulties.

Nutrition Assessment:

- **Growth Parameters**
 1. Wt: 4.5 kg (<2nd %-
 ile)
 2. Length: 59 cm (<2nd %-
 ile)
 3. HC: 40.5 cm (10-25th %-
 ile)
 4. Wt-for-ht: 5.5 kg
 5. Wt-age: 1 month old

- **Intake History**
 1. Breast feeds PO ad lib 3-4 x per day; hold feeds if respiratory rate exceeds 50
 2. Supplementation with Enfamil 20 kcal/oz: 1.5-2 oz/feed q 3-4 hours
 3. Mom reports infant feeds very slowly and for long periods of time (takes > 30
 minutes to feed); and appears out of breath and tired at the end of feeding

- **Labs:** WNL
- **Meds:** Lasix, fentanyl, warfarin

Estimated Nutritional Needs (Catch-Up Growth)

- 1. Calories:
- 2. Protein:

Recommendations:

- 1. ________________________________
- 2. ________________________________
- 3. ________________________________

Goals:

- 1. ________________________________
- 2. ________________________________

Monitor/Evaluation:

- 1. ________________________________
- 2. ________________________________
- 3. ________________________________

Summary

- CHDs are the most common birth defect responsible for infant death, while still considered rare
- Defects range from simple to complex, with single ventricular physiology being the most complex
- CHD infants generally have higher energy & nutrient needs, and feeding difficulties & growth failure are life-long issues
- Nutrition management plays key role in optimizing patients outcomes and chances for survival post-operatively
 - Promote wound healing
 - Promote catch-up growth and development
 - Reduce risk of infection
- Many factors negatively impact their ability to consume, absorb, or utilize nutrient
References:

15. https://www.littlehearts.org/Content/CHD_Resources.asp
18. http://www.texasheartinstitute.org/HIC/Topics/Cond/CongenitalHeartDisease.cfm